COMP 520 - Compilers

Lecture 16 — Code/Data Path Analysis

Reminders

* Midterm 2 on next Thursday, 4/11
* WA3 due tonight

COMP 520: Compilers —S. Ali

Announcements

* PAA- Make(Reg ridx, int mult, int disp, Reg r)
* This is probably the most difficult Make method

* Two ways around this:
* Don’t use [ridx*mult+disp] in your CodeGenerator
* Solve the mystery in the ModRM+SIB table

* WA3

* rep stosqg- “REP” is a prefix that repeats the subsequent
instruction “STOSQ”. The documentation for REP will tell you
what the end condition is. Assume DF=0 or 1, either is fine.

COMP 520: Compilers —S. Ali

Announcements (2)

PA4- Clarifications

* Callee should clean the stack
* See ret imm16, where imm16 bytes are removed after returning.

* If you want your own username on the test server, make a
private Piazza post, and Eric or | will adduser you.
* Don’t need to do this, use the generic comp520 login otherwise.

* You do not get sudo permissions though, for the sanity of
everyone involved.

COMP 520: Compilers —S. Ali

Announcements (3)

PA4- Clarifications
* You are given mmap, which allocates a 4kb chunk.

* Remember, your PA4 goal is to make the code work before
you optimize, so just make everything a 4kb allocation even
if the size isn’t 4kb.

* Can change this later in PA5’s optional extra credit.

COMP 520: Compilers —S. Ali

Announcements (4)

PA4- Clarifications
* Do not allocate objects on the stack.

* Some tests check for this where too many objects on the
stack will crash the program.

* Lastly, you need to find out how to do sys write. Use the
given sys_mmap example.
* Enables System.out.printIn(int n);

COMP 520: Compilers —S. Ali

Compiler
Optimization

Dataflow Analysis

Multiple CodePath

Data Liveness Expr Liveness .
Generation

o

TODAY

COMP 520: Compilers —S. Ali

Available Expressions /
Expression Lifetime Analysis

COMP 520: Compilers —S. Ali

Consider the following code:

s = a *+ b;

m -= a * b,

while(m > a)
a :=a+ 1;
s :=a t+ b;

COMP 520: Compilers —S. Ali

s = g

m .= a

while (
a
S

COMP 520: Compilers —S. Ali

Construct the CFG

m:=a*b

= o

ifm<a

a:=a+1l

s:=a+b

|} return

When data is invalidated, so are
all expressions utilizing that data.

s :=a t b,

9 = a+ 1; |

{a+b, a*b }
‘ a:=a+1 return

'=a+b

l

s:=a+b ‘
b

m:=a*

‘ {a+b, a*b }

ifm<a

S

COMP 520: Compilers —S. Ali

11

)

—,

When data is invalidated, so are
all expressions utilizing that data.

s ‘= a t+ b;

m := a * b,

while(m > a) {
a :=a*t 1,

s :=a + b;

Note: we lost a*b here: /

COMP 520: Compilers —S. Ali

{a+b, a*b }

return

12

)

prm—— |

When data is invalidated, so are
all expressions utilizing that data.

s :=a+tb; S:=a+b-£5-
b

m := a % b; +
m:=a*
Whlle(m > a) { lv {a+b, a*b }
a ‘=a*tl; ifm<a
s st |-mnﬂ
} | ‘ a:=a+1l return
s:=a+b
o)

13
COMP 520: Compilers —S. Ali

Expression Liveness

* Very useful so that an expression does not have to be
re-evaluated.

* Let’s look at that example earlier with one minor
modification.

COMP 520: Compilers —S. Ali

14

)

=

No need to re-evaluate a+b, because s is an alias.

oy
||

a + 1; — ifm<a

2 4 b e

} a:=a+1l z=a+b
7z = a + b; ! ‘

s:=a+b return

n
I

Evaluate a+b?? NO!

15
COMP 520: Compilers —S. Ali

Formal Description: Expression Liveness

* Each vertex generates some “facts”

 Each vertex invalidates some “facts”

* Expression Liveness:

* gen, (v) = expressions evaluated
e kill. (v) = all expressions that contain def(v)

*in.(v) = anpredecessor(v) oute(p)
e out,(v) = gen.(v) U (ine(v) \kille(v))

16
COMP 520: Compilers —S. Ali

Another Description: Data Liveness

* Each vertex generates some “facts”

 Each vertex invalidates some “facts”

e Data Liveness:

* geng(v) = use(v)
e Killj(v) = def(v)

*outq(v) = Uge(..)ing(s)
*ing(v) = geny(v) U (outd(v) \kill(v))

COMP 520: Compilers —S. Ali

Termination in “Expression Liveness”

* Only re-evaluate vertices when a predecessor has a
change in the out, set.

* Will eventually reach a fixed-point.

COMP 520: Compilers —S. Ali

18

Not so simple...

* Problem: what about more complex expressions:
(x +y) ==(z + w)
* We can keep many expressions alive:
*Parts:x +vy, z+w
* Theentire: (x +y) == (z+w)
* What about: not x, y alive, but instead @ = x + vy alive
ca==(z+w)
* Etc.

COMP 520: Compilers —S. Ali

)

=

|dea: Break up vertices

* Break every expression into small constituent
components. Generate extra code!

“(x+y)=(z+w)” = {xty, z+w }

" orgnal | ceneratecose |

a = X+y
c := (x+y) == (z+w)
b :=z+w

Some part of

C := (x+y)==(z+w)
the expression ‘ d:=z+w
d:=z+w

is used later
return c+d

COMP 520: Compilers —S. Ali

20

)

=

Apply Expression Liveness Analysis

* Replace expressions with aliased expressions

Apply Aliases

a = Xty a = Xty
C := (x+y) == (z+w)
b :=z+w b :=z+w
C := (x+y)==(z+w) c:=a==b
d:=z+w ‘
d:=z+w d:=b

return c+d

COMP 520: Compilers —S. Ali

21

)

=

Apply Data Liveness Analysis

* Reuse variable names

a = X+y a = X+y

wwnnnn

C := (x+y) == (z+w)
b :=z+w = z+W

C := (x+y)==(z+w) c:=a==b l I
d:=z+w
d:=z+w d:=b I '

return c+d

22
COMP 520: Compilers —S. Ali

)

=

Apply Data Liveness Analysis

* Can eliminate redundant operations

oy Mases s | o o] cLd]_Now oo i
a = X+y a = X+y X := X+y

C := (x+y) == (z+w)

b :=z+w = Z+W y = z+W

C := (x+y)==(z+w) c:=a==b l X 1= x==y
d:=z+w I

d:=z+w d:=b

X 1= X+y
ret x

23

COMP 520: Compilers —S. Ali

Review

* Data Liveness Analysis:
e Reduces the amount of data you need in memory at any given time

* Somewhat related to minimizing register usage (minimizing
registers can be done after data+expression liveness)

* Expression Liveness Analysis:
* Can eliminate the need to re-process expressions

* Combined:
* They can eliminate instructions and reduce memory consumption.
* Without the other, significantly less effective.

COMP 520: Compilers —S. Ali

24

COMP 520: Compilers —S. Ali

More Optimization?

4 (o) Does that mean we
. need 4 registers?
1 (x)

25

More Optimization?

BTN Docs that mean we

need 4 registers?

X 1= X+y 4 (x,y,z,w)

VY = Z+W 4 (x,y,z,wW)

X = X== 2 (x,y) Nope! More optimization possible

X=Xty 2 (xy) that will be related to the target
ret x 1 (x)

architecture.

COMP 520: Compilers —S. Ali

26

X := X+y

y = Z+W

X = X::y

X 1= X+y

ret x

COMP 520: Compilers —S. Ali

Register Minimalization is not
Dataflow/Expression Analysis

4 (x,y,2,w)

4 (x,y,2,w)

2 (x,y)

2 (x,y)

1 (x)

mov rax,[X]
add rax,[y]
mov rcx,[z]
add rcx,[w]
cmp rax,rcx
XOr rax,rax

sete al

add rax,rcx

ret

1 (rax)

1 (rax)
2 (rax,rcx)
2 (rax,rcx)
2 (rax,rcx)
2 (rax,rcx)

2 (rax,rcx)

2 (rax,rex)

1 (rax)

Only needed two registers.
Why? Because x64 can do

“load memory” operations
inside of instructions!

27

Optimized Code Generation —
AST Reprocessing

)

=

You can find optimizations before you
reach code generation.

* AST-level optimizations can become an “Optimization”
AST traversal phase before CodeGeneration

Syntactic Contextual Optimization

29

COMP 520: Compilers —S. Ali

Expression Optimization

* Developer writes the code:

// This page needs to start 3 full pages
// after base address
int somePg = (3 % 4096) + 0x80000000;

COMP 520: Compilers —S. Ali

30

..S0 we generate the code

Input Code Generated Code

movV rax,4096

int somePg = (3 * 4096) imul 3 # pseudocode
+ 0x30000000; add rax,0x80000000

mov dword [somePg],rax

Anyone have any problems with this?

COMP 520: Compilers —S. Ali

31

Fix the AST
Input Code / Create visitor \

int somePg = (3 * 4096) “Expression Pre-evaluator Visitor”
+ 0x80000000;

Visit BinExpr / UnaryExpr

. Input AST Visit sub-expressions.
BinExpr .(+) If all expressions are LiteralExpr,
BinExpr (*) Return a new LiteralExpr
3
4096 eturned LiteralExpr pre-evaluates
LiteralExpr (0x80000000) constant operations.

32

COMP 520: Compilers —S. Ali

Fix the AST (Example)

Input Code Output AST

int somePg = (3 * 4096) First Converge
+ 0x80000000; BinExpr (+)

LiteralExpr (12288)
Input AST LiteralExpr (0x80000000)
BinExpr (+)

BinExpr (*)
3
4096
LiteralExpr (0x80000000)

COMP 520: Compilers —S. Ali

33

Fix the AST (Example 2)

Input Code Output AST
int somePg = (3 * 4096) First Converge
+ 0x80000000; BinExpr (+)
LiteralExpr (12288)
Input AST LiteralExpr (0x80000000)
BinExpr (+)
BinExpr (*) Second Converge
3 LiteralExpr(0x80003000)
4096

LiteralExpr (0x80000000)

COMP 520: Compilers —S. Ali

34

Optimization Visitor Model (Finish)

e Each visit returns an AST
* Most of them return themselves.
* Otherwise, return a new optimized AST.

* E.g., BinExpr.LHS = BinExpr.LHS.visit(...);
BinExpr.RHS = BinExpr.RHS.visit(...);
... Now are LHS and RHS instanceof LiteralExpr?
... If so, return new LiteralExpr(... “LHS op RHS” ...);

COMP 520: Compilers —S. Ali

35

Intel C Compiler- Case Study

COMP 520: Compilers —S. Ali

oT
oT

‘II

“Genuine Inte

nis study is an interesting intersection of topics.

nings to keep in mind:

* x86 belongs to Intel
* x64 (the 64-bit extension) was developed by AMD, was so

popular that Intel was forced to adopt it (in lieu of 1A64)

* AMD has a license to make x86/x64 processors

* Exactly how fair does Intel have to be towards its
competition?

37

COMP 520: Compilers —S. Ali

COMP 520: Compilers —S. Ali

|CC Generates this code

* cpuid

*cmp ebx, Ox756E6547
*jne OtherlLoc

*cmp edx, 0x49656E69
*jne OtherlLoc

*cmp ecx, Ox6C65746E
*jne OtherlLoc

Problem Statement:
This code looks nothing

like the input program’s
source code.

38

Consider the code:

int al[100], b[100], c[100];
.« // Initialize Data

for(int 1 = 0; 1 < 100; ++i) {
cli] = alil] + bli];

COMP 520: Compilers —S. Ali

Generate Simple Code

Original X64

int al100], b[100], c[100]; # Assume data initialized already

-+ // Initialize Data # int = 4 bytes long

for (int i = 0; i < 100; ++i) { # From this line, generate code
cli] = ali] + blil;

40
COMP 520: Compilers —S. Ali

Option 1 (Initialization)

Original

int a[100], b[100], c[100];

..« // Initialize Data

for(int i = 0; i < 100; ++i) {
cli]l = alil] + bli]l;

COMP 520: Compilers —S. Ali

x64

From this line, generate code

mov rax,0 # Initialize i=0
loopStart: cmp rax,100 # compare, i to 100
jge loopEnd #if i >=100, end loop
mov rdx, [a+rax™4] # rdx= a[i]
add rdx, [b+rax*4] # rdx += b[i]
mov [c+rax*4],rdx # c[i] = rdx
inc rax H++i
jmp loopStart # loop
loopEnd:

41

Option 1 (Condition)

Original

int a[100], b[100], c[100];

..« // Initialize Data

for(int 1 = 0; 1 < 100; ++i) {
cli]l = alil] + bli]l;

COMP 520: Compilers —S. Ali

x64

From this line, generate code

mov rax,0 # Initialize i=0
loopStart: cmp rax,100 # compare, i to 100
jge loopEnd # if i >= 100, end loop
mov rdx, [a+rax™4] # rdx= a[i]
add rdx, [b+rax*4] # rdx += b[i]
mov [c+rax*4],rdx # c[i] = rdx
inc rax H++i
jmp loopStart # loop
loopEnd:

42

Option 1 (Body)

Original X64
int a [100] : b [100] o [100] : # From this line, generate code
mov rax,0 # Initialize i=0
.. // Initialize Data loopStart: cmp rax,100 # compare, i to 100
jge loopEnd #if i >=100, end loop
for(int 1 = 0; i < 100; ++i) { mov rdx, [a+rax*4] # rdx= ali]
cli] = al[il + bl[i]; add rdx, [b+rax*4] # rdx += b[i]
} mov [c+rax*4],rdx # c[i] = rdx
inc rax H++i
jmp loopStart # loop
loopEnd:

COMP 520: Compilers —S. Ali

Option 1 (Incremental)

Original

int a[100], b[100], c[100];

..« // Initialize Data

for(int i = 0; i < 100; ++i) {
cli]l = alil] + bli]l;

COMP 520: Compilers —S. Ali

x64

From this line, generate code

mov rax,0 # Initialize i=0
loopStart: cmp rax,100 # compare, i to 100
jge loopEnd #if i >=100, end loop
mov rdx, [a+rax™4] # rdx= a[i]
add rdx, [b+rax*4] # rdx += b[i]
mov [c+rax*4],rdx # c[i] = rdx
inc rax H ++i
jmp loopStart # loop
loopEnd:

44

Observation 1

* Each loop has no dependency on the previous loop

for(int i = 0; 1 < 100; ++i) {
cli] = alil] + bli];

45
COMP 520: Compilers —S. Ali

Option 2

cld
mov rcx,100

int a[100], b[100], c[100]; lea rdi,[c] /\
lea rsi,[a]

..« // Initialize Data rep movsd startLoop: cmp rax,100
jge endLoop

for(int i = 05 i < 100; ++i) MOVIA0 | Ghoy rdx, [b+rax*4]
{ add [c+rax™4],rdx
cli] = ali] + bli]; inc rax
) jmp startLoop
endLoop:

Original

46
COMP 520: Compilers —S. Ali

Option 2 — Loop Comparison

Option 1 Option 2
loopStart: cmp rax,100 # compare, i to 100 startLoop: cmp rax,100
jge loopEnd #if i >= 100, end loop jge endLoop
mov rdx, [a+rax*4] 4 rd= ali One less instruction
add rdx, [b+rax*4] # rdx += b[i] mov rdx,[b+rax*4]
mov [c+rax*4],rdx # c[i] = rdx add [c+rax*4],rdx
inc rax # ++i inc rax
jmp loopStart # loop jmp startLoop
loopEnd: endLoop:

47
COMP 520: Compilers —S. Ali

Option 2 — Initialization Comparison

mov rax,0

Option 1

Initialize i=0

Option 2
cld # Set DF=0
mov rcx,100
lea rdi,|[c]
lea rsi,[a]

rep movsd # store all of [a] into [c]

mov rax,0 # Initialize i=0

Is 1 or 2 always better than the other?

COMP 520: Compilers —S. Ali

48

What is better?

* Depends on how fast rep movsd works.

* Instead, consider an even more optimized vectorized
instructions, like AVX.

* VEX.128.66.0F.WIG FE VPADDD

* Does 3 additions in one, if the loop was only 3 integers,
could do the entire loop in one instruction.

COMP 520: Compilers —S. Ali

49

Intel C Compiler

* Optimization can rewrite code, but what if | take it a
step further?

* How about this:

for(inti=0;i<100; ++i)
dli] = sli];

COMP 520: Compilers —S. Ali

50

)

=

Intel C Compiler 4N
Allowed

mov rcx,100
if(“IntelProcessor”) {

* How about this:
for(inti=0;i<100; ++i)

. . lea rsi,[s]
dli] = slil; lea rdi,[d]
rep movsd
COMPILER REWRITES
} else {

Do loop like option 1
}

51
COMP 520: Compilers —S. Ali

Can make it worse!

If(“IntelProcessor”) {
// do optimized code
} else {
// don’t even copy integers (4 bytes)
// copy ONE BYTE AT A TIME
for(...) { ... mov [rdi+0], al
mov [rdi+1], ah
mov [rdi+2], c
mov [rdi+3], ch ... }

COMP 520: Compilers —S. Ali

People even make patchers...

* As a part of the development process, when code is
compiled using ICC...

* Use a tool as a part of the build process to always
patch out “if(Intel)” checks

Intel Compiler Patcher

50/5 76 -4 « Last updated: Mar 15, 2010

COMP 520: Compilers —S. Ali

53

Largely patched now in ICC

e ..Oris it?

e But this gives us some excellent ideas on our own
compiler project!

* What if we can optimize for certain scenarios during
runtime?
(Even if those scenarios don’t always happen!)

54
COMP 520: Compilers —S. Ali

COMP 520: Compilers —S. Ali

ICC

*cpuid
‘cmp e
*jne Ot

Generates this code

Get CPU info
oX, Ox756E6547 # “Genu”

nerLoc

*cmp edx, 0x49656E69 # “inel”
*jne OtherlLoc
*cmp ecx, 0x6C65746E # “ntel”
*jne OtherlLoc

55

Multiple Code Path Generation

COMP 520: Compilers —S. Ali

Round up to the nearest multiple of 8

* Take a moment, and think about the code needed to
round an integer, x, to the nearest multiple of 8

57
COMP 520: Compilers —S. Ali

Round up to the nearest multiple of 8

* Take a moment, and think about the code needed to
round an integer, x, to the nearest multiple of 8

while((x % 8) !=0)
X,

COMP 520: Compilers —S. Ali

Now try nearest multiple of “y”

* Not a big change

while((x %y) !=0)
X,

COMP 520: Compilers —S. Ali

Rounding up to a power of 2

 Earlier example (to the next multiple of 8)
* Analyze the following:

add [x],7 HX+=7
and [x],~7 # X &= OXFFFFFFF8 (32-bit sign extended)

What does this code accomplish?

60
COMP 520: Compilers —S. Ali

So let’s rewrite the second example

if(popcnt(y)==1&&y>0){

c=y-1; // Optimized Code
x=(x+c)&~c; — —— // Not always faster
} else {
while((x % y) !=0) // General Code
++X;

4

J

COMP 520: Compilers —S. Ali

Loop Unrolling

Let’s try to handle some cases of “small iterations are still faster”

Compiler cleans up the mess

Bad Code Clean Code
printf(“\t”);
printf(“\t”); for(inti=0;i<4; ++i)
printf(“\t”); printf(“\t”);

printf(“\t”);

COMP 520: Compilers —S. Ali

Compiler cleans up the mess

Bad-Faster Code Clean-Inefficient Code
printf(“\t”);
printf(“\t”); for(inti=0;i<4; ++i)
printf(“\t”); printf(“\t”);

printf(“\t”);

COMP 520: Compilers —S. Ali

64

From Dataflow Analysis

e Can track the lifetime of variables.

* This also means we can simulate the range of
variables.

* This type of analysis is expensive

* |dea: simulate only variables that are used in conditions
where the variable’s lifetime is not easily invalidated.

65
COMP 520: Compilers —S. Ali

)

Input CFG

* Observation: lifetime of
condition “x” is easily

m analyzable.

* Loop is bounded, unroll
the loop

COMP 520: Compilers —S. Ali

66

Output Code

ush “\t\0”
oo BN o
call [printf] than having a
— LR call [prin]
] condition
call [printf] jumps,
call :printf: comparison
statements,
add rSpIS etc.

67

COMP 520: Compilers —S. Ali

Formally, this is the problem

e f(n) € 0(9(7’1)) =Vn:n=N: f(n) < gn)

* We can optimize around the scenarion < N in the
compiler’s generated code.

COMP 520: Compilers —S. Ali

68

Formally, this is the problem

e f(n) € O(Q(n)) =Vn:n=N: f(n) < gn)

* |dea: Add code, if n < N, then take a different code
path (use optimized algorithm instead of normal code)

69
COMP 520: Compilers —S. Ali

How to Apply Multiple Code
Paths

Check Dataflow Analysis

*|s there a memory dependency on the previous loop?

for(inti=0;i<100; ++i)
dli] = sli];

No i-1 or i+1, can apply code
generation optimizations

71
COMP 520: Compilers —S. Ali

Check Dataflow Analysis (2)

*|s there a memory dependency on the previous loop?

for(inti=0;i<100; ++i)
d[i] = sli];

U Se: rep mOVSd No i-1 or i+1, can apply code

generation optimizations

72
COMP 520: Compilers —S. Ali

Check Dataflow Analysis (3)

* |s there a non-array dependency in every loop?

f=0;
for(inti=0;i<100; ++i) "
dli] =1; d[i] = f
Def: d[i]
Use: rep StOSd Dependency is on single

memory location

73
COMP 520: Compilers —S. Ali

Optimization — Your imagination
IS the limit

COMP 520: Compilers —S. Ali

Consider the following code:

int someFn() {

return code;

J

void mainFn() {
int x = someFn();
printf(“%d\n”,x);
}

COMP 520: Compilers —S. Ali

Consider the following code:

int someFn() { RETURN

P!

CALL

‘—>

return code; H

void mainFn() {
int x = someFn();
printf(“%d\n”,x);

J

COMP 520: Compilers —S. Ali

76

)

=

CALL @ RETURN
int someFn() { @ 0
return code; ICC did the craziest
} optimization:

void mainFn() { @_

int x = someFn();
printf(“%d\n”,x); o Return’

| ©

COMP 520: Compilers —S. Ali

)

=

Combined into one
continuous function

Old Code

NEW main

Old main

78
COMP 520: Compilers —S. Ali

)

=

|deas?

* How can we create such optimizations?

Combined into one
continuous function

Old Code

NEW main

Old main

COMP 520: Compilers —S. Ali

79

Inline operations

* Compiler can detect “method was only used once”,
instead of generating “push, call, return, pop”, just
take the method’s code and place it where it is used.

* Apply a translation to ParameterDecl to map to local
variables.

80
COMP 520: Compilers —S. Ali

Have a great weekend!

* Work on PA4, get some experience for the Midterm
* Midterm next week.

* WA3 due tonight.

COMP 520: Compilers —S. Ali

81

End

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

=% THE UNIVERSITY
I I of NORTH CAROLINA
i at CHAPEL HILL

	Slide 1: COMP 520 - Compilers
	Slide 2: Reminders
	Slide 3: Announcements
	Slide 4: Announcements (2)
	Slide 5: Announcements (3)
	Slide 6: Announcements (4)
	Slide 7: Compiler Optimization
	Slide 8: Available Expressions / Expression Lifetime Analysis
	Slide 9: Consider the following code:
	Slide 10: Construct the CFG
	Slide 11: When data is invalidated, so are all expressions utilizing that data.
	Slide 12: When data is invalidated, so are all expressions utilizing that data.
	Slide 13: When data is invalidated, so are all expressions utilizing that data.
	Slide 14: Expression Liveness
	Slide 15: No need to re-evaluate a+b, because s is an alias.
	Slide 16: Formal Description: Expression Liveness
	Slide 17: Another Description: Data Liveness
	Slide 18: Termination in “Expression Liveness”
	Slide 19: Not so simple…
	Slide 20: Idea: Break up vertices
	Slide 21: Apply Expression Liveness Analysis
	Slide 22: Apply Data Liveness Analysis
	Slide 23: Apply Data Liveness Analysis
	Slide 24: Review
	Slide 25: More Optimization?
	Slide 26: More Optimization?
	Slide 27: Register Minimalization is not Dataflow/Expression Analysis
	Slide 28: Optimized Code Generation – AST Reprocessing
	Slide 29: You can find optimizations before you reach code generation.
	Slide 30: Expression Optimization
	Slide 31: ..So we generate the code
	Slide 32: Fix the AST
	Slide 33: Fix the AST (Example)
	Slide 34: Fix the AST (Example 2)
	Slide 35: Optimization Visitor Model (Finish)
	Slide 36: Intel C Compiler- Case Study
	Slide 37: “Genuine Intel”
	Slide 38: ICC Generates this code
	Slide 39: Consider the code:
	Slide 40: Generate Simple Code
	Slide 41: Option 1 (Initialization)
	Slide 42: Option 1 (Condition)
	Slide 43: Option 1 (Body)
	Slide 44: Option 1 (Incremental)
	Slide 45: Observation 1
	Slide 46: Option 2
	Slide 47: Option 2 – Loop Comparison
	Slide 48: Option 2 – Initialization Comparison
	Slide 49: What is better?
	Slide 50: Intel C Compiler
	Slide 51: Intel C Compiler
	Slide 52: Can make it worse!
	Slide 53: People even make patchers…
	Slide 54: Largely patched now in ICC
	Slide 55: ICC Generates this code
	Slide 56: Multiple Code Path Generation
	Slide 57: Round up to the nearest multiple of 8
	Slide 58: Round up to the nearest multiple of 8
	Slide 59: Now try nearest multiple of “y”
	Slide 60: Rounding up to a power of 2
	Slide 61: So let’s rewrite the second example
	Slide 62: Loop Unrolling
	Slide 63: Compiler cleans up the mess
	Slide 64: Compiler cleans up the mess
	Slide 65: From Dataflow Analysis
	Slide 66: Input CFG
	Slide 67: Output Code
	Slide 68: Formally, this is the problem
	Slide 69: Formally, this is the problem
	Slide 70: How to Apply Multiple Code Paths
	Slide 71: Check Dataflow Analysis
	Slide 72: Check Dataflow Analysis (2)
	Slide 73: Check Dataflow Analysis (3)
	Slide 74: Optimization – Your imagination is the limit
	Slide 75: Consider the following code:
	Slide 76: Consider the following code:
	Slide 77
	Slide 78
	Slide 79: Ideas?
	Slide 80: Inline operations
	Slide 81: Have a great weekend!
	Slide 82: End
	Slide 83
	Slide 84
	Slide 85
	Slide 86

